By Topic

On the Use of I-Divergence for Generating Distribution Approximations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Maia, M.A.G.Mattoso ; Electronics Laboratories, University of Kent at Canterbury, Kent CT2 7NT, England. ; Fairhurst, M.C.

The existence of an upper bound for the error probability as a function of I-divergences between an original and an approximating distribution is proved. Such a bound is shown to be a monotonic nondecreasing function of the I-divergences, reaching the Bayes error probability when they vanish. It has been shown that if the closeness between the original and approximating distributions is assessed by the probability of error associated with a particular two-class recognition problem in which those functions are the class conditional distributions, then the best upper bound for such probability is ¿ regardless of the value of the I-divergences between them. Approaching the approximation problem from a rather different viewpoint, this correspondence considers the problem of a two-class discrete measurement classification where the original distributions are replaced by approximations, and its effects on the probability of error. The corresponding analysis is presented in detail.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-5 ,  Issue: 6 )