By Topic

The Use of Shrinkage Estimators in Linear Discriminant Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Roger Peck ; Programs in Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080. ; John Van Ness

Probably the most common single discriminant algorithm in use today is the linear algorithm. Unfortunately, this algorithm has been shown to frequently behave poorly in high dimensions relative to other algorithms, even on suitable Gaussian data. This is because the algorithm uses sample estimates of the means and covariance matrix which are of poor quality in high dimensions. It seems reasonable that if these unbiased estimates were replaced by estimates which are more stable in high dimensions, then the resultant modified linear algorithm should be an improvement. This paper studies using a shrinkage estimate for the covariance matrix in the linear algorithm. We chose the linear algorithm, not because we particularly advocate its use, but because its simple structure allows one to more easily ascertain the effects of the use of shrinkage estimates. A simulation study assuming two underlying Gaussian populations with common covariance matrix found the shrinkage algorithm to significantly outperform the standard linear algorithm in most cases. Several different means, covariance matrices, and shrinkage rules were studied. A nonparametric algorithm, which previously had been shown to usually outperform the linear algorithm in high dimensions, was included in the simulation study for comparison.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-4 ,  Issue: 5 )