By Topic

Experiments in Text Recognition with Binary n-Gram and Viterbi Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jonathan J. Hull ; Department of Computer Science, State University of New York at Buffalo, Amherst, NY 14226. ; Sargur N. Srihari

The binary n-gram and Viterbi algorithms have been suggested as alternative approaches to contextual postprocessing for text produced by a noisy channel such as an optical character recognizer. This correspondence describes the underlying theory of each approach in unified terminology, and presents new implementation algorithms for each approach. In particular, a storage efficient data structure is proposed for the binary n-gram algorithm and a recursive formulation is given for the Viterbi algorithm. Results of extensive experiments with each algorithm are described.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-4 ,  Issue: 5 )