By Topic

An Experimental Study of Some Algorithms for Unsupervised Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Niemann, H. ; Lehrstuhl fÿr Informatik 5, Universitÿt Erlangen, Erlangen, West Germany. ; Sagerer, G.

Three well-known algorithms for unsupervised learning using a decision-directed approach are the random labeling of patterns according to the estimated a posteriori probabilities, the classification according to the estimated a posteriori probabilities, and the iterative solution of the maximum likelihood equations. The convergence properties of these algorithms are studied by using a sample of about 10 000 handwritten numerals. It turns out that the iterative solution of the maximum likelihood equations has the best properties among the three approaches. However, even this one fails to yield satisfactory results if the number of unknown parameters becomes large, as is usually the case in realistic problems of pattern recognition.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-4 ,  Issue: 4 )