By Topic

Systematic Feature Extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kenneth A. Brakke ; Department of Mathematics, Purdue University, West Lafayette, IN 47907. ; James M. Mantock ; Keinosuke Fukunaga

A systematic feature extraction procedure is proposed. It is based on successive extractions of features. At each stage a dimensionality reduction is made and a new feature is extracted. A specific example is given using the Gaussian minus-log-likelihood ratio as a basis for the extracted features. This form has the advantage that if both classes are Gaussianly distributed, only a single feature, the sufficient statistic, is extracted. If the classes are not Gaussianly distributed, additional features are extracted in an effort to improve the classification performance. Two examples are presented to demonstrate the performance of the procedure.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-4 ,  Issue: 3 )