Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Matching Images to Models for Registration and Object Detection via Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stockman, George ; MEMBER, IEEE, Department of Mathematics, Statistics, and Computer Science, American University, Washington, DC 20016; LNK Corporation, College Park, MD 20740. ; Kopstein, Steven ; Benett, Sanford

A new technique is presented for matching image features to maps or models. The technique forms all possible pairs of image features and model features which match on the basis of local evidence alone. For each possible pair of matching features the parameters of an RST (rotation, scaling, and translation) transformation are derived. Clustering in the space of all possible RST parameter sets reveals a good global transformation which matches many image features to many model features. Results with a variety of data sets are presented which demonstrate that the technique does not require sophisticated feature detection and is robust with respect to changes of image orientation and content. Examples in both cartography and object detection are given.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-4 ,  Issue: 3 )