By Topic

Statistical Properties of Error Estimators in Performance Assessment of Recognition Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Kittler ; Technology Division, SERC Rutherford and Appleton Laboratories, Chilton, England. ; P. A. Devijver

The problem of estimating the error probability of a given classification system is considered. Statistical properties of the empirical error count (C) and the average conditional error (R) estimators are studied. It is shown that in the large sample case the R estimator is unbiased and its variance is less than that of the C estimator. In contrast to conventional methods of Bayes error estimation the unbiasedness of the R estimator for a given classifier can be obtained only at the price of an additional set of classified samples. On small test sets the R estimator may be subject to a pessimistic bias caused by the averaging phenomenon characterizing the functioning of conditional error estimators.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-4 ,  Issue: 2 )