By Topic

Pixel Classification Based on Gray Level and Local ``Busyness''

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Philip A. Dondes ; Computer Vision Laboratory, Computer Science Center, University of Maryland, College Park, MD 20742. ; Azriel Rosenfeld

An image can be segmented by classifying its pixels using local properties as features. Two intuitively useful properties are the gray level of the pixel and the ``busyness,'' or gray level fluctuation, measured in its neighborhood. Busyness values tend to be highly vari-able in busy regions; but great improvements in classification accuracy can be obtained by smoothing these values prior to classifying. An alternative possibility is to classify probabilistically and use relaxation to adjust the probabilities.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-4 ,  Issue: 1 )