By Topic

A Maximum Likelihood Approach to Texture Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vickers, A.L. ; Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181. ; Modestino, J.

A new approach to texture classification is described which is based on measurements of the spatial gray-level co-occurrence probability matrix. This approach can make use of assumed stochastic models for texture in imagery and is an approximation to the statistically optimum maximum likelihood classifier. The efficacy of the approach is demonstrated through experimental results obtained with real-world texture data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-4 ,  Issue: 1 )