Cart (Loading....) | Create Account
Close category search window
 

An Efficient Two-Dimensional FFT Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Johnson, Lawrence R. ; Department of Computer Science, Michigan State University, East Lansing, MI 48823; SYSTEMS Engineering Laboratory, Fort Lauderdale, FL. ; Jain, Anil K.

A new version of the radix-2 row-column method for computing two-dimensional fast Fourier transforms is proposed. It uses a ``multiple vector'' FFT algorithm to compute the transforms of all the columns in an array simultaneously while avoiding all trivial multiplications. The minicomputer implementation of the algorithm runs faster than the 2 × 2 vector radix FFT algorithm. Analysis of the numbers of complex additions and multiplications required indicate that implementations of the radix-4 row-column FFT and 4 × 4 vector radix FFT on the same minicomputer would run slower than the multiple vector implementation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-3 ,  Issue: 6 )

Date of Publication:

Nov. 1981

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.