By Topic

On the Cellular Convexity of Complexes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chul E. Kim ; Department of Computer Science, University of Maryland, College Park, MD 20742.

In this paper we discuss cellular convexity of complexes. A new definition of cellular convexity is given in terms of a geometric property. Then it is proven that a regular complex is celiularly convex if and only if there is a convex plane figure of which it is the cellular image. Hence, the definition of cellular convexity by Sklansky [7] is equivalent to the new definition for the case of regular complexes. The definition of Minsky and Papert [4] is shown to be equivalent to our definition. Therefore, aU definitions are virtually equivalent. It is shown that a regular complex is cellularly convex if and only if its minimum-perimeter polygon does not meet the boundary of the complex. A 0(n) time algorithm is presented to determine the cellular convexity of a complex when it resides in n × m cells and is represented by the run length code.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-3 ,  Issue: 6 )