By Topic

Thresholding Using Relaxation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rosenfeld, Azriel ; Computer Vision Laboratory, Computer Science Center, University of Maryland, College Park, MD 20742. ; Smith, Russell C.

If a picture contains dark objects on a light background (or vice versa), the objects can be extracted by thresholding, i.e., by classifying the pixels into ``light'' and ``dark'' classes. If the picture is noisy, so that the object and background gray level populations overlap, there will be errors in the thresholded output. A relaxation process can be used to reduce these errors; we classify the pixels probabilistically, and then adjust the probabilities for each pixel, based on its neighbors' probabilities, with light reinforcing light and dark dark. When this adjustment process is iterated, the dark probabilities become very high for pixels that belong to dark regions, and vice versa, so that thresholding becomes trivial.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-3 ,  Issue: 5 )