Cart (Loading....) | Create Account
Close category search window
 

ANDAL: A Nonparametric Discrimination And Learning Algorithm for Recognition in Imperfectly Supervised Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheela, Belur V. ; ISRO Satellite Center, Bangalore, India. ; Dasarathy, B.V.

The problem of recognition in nonparametric environments under imperfect supervision is not amenable to solution through classical statistical approaches based on identification of finite mixtures, which require an a priori knowledge of the probabilistic descriptions of the classes. Accordingly, the problem is viewed in this study as one of optimal linear/nonlinear partitioning of the imperfectly labeled training sample set. This optimal partitioning is accomplished by defining an appropriate optimality criterion, which takes into account the imperfectness of supervision, and solving the resultant optimization problem through the Improved Flexible Polyhedron Method (IFPM). Possible alternatives to compensate for the inherent bias in this criterion towards equipopulation clusters are developed and evaluated using an illustrative example. Details of the methodology involved in implementing the approach are presented. Results of simulation experiments, which confirm the validity and effectiveness of this new technique in accomplishing optimal, linear/nonlinear discriminant learning in imperfectly supervised, nonparametric environments, are included.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-3 ,  Issue: 4 )

Date of Publication:

July 1981

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.