By Topic

On the Influence of Sample Set Structure on Decision Rule Quality for the Case of a Linear Discriminant Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Brailovsky, Victor ; Department of Computer Science, University of Maryland, College Park, MD 20742.

The influence of sample set structure on decision rule quality for the case of a linear discriminant function is considered. Specifically, the case of missing data in the sample set and the case when the multivariate random variable is to be registered with the help of a single-channel device are investigated. Some rather unusual phenomena are discussed, such as when some new samples are added to the sample set, and as a result the quality of parameter estimations used in a decision rule become better, but at the same time the quality of the decision rule itself becomes worse. The investigation is performed for the classical model of a twocategory classifier when the categories are described by the multivariate normal densities having common covariance matrices. Some results of statistical simulation experiments are included.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-3 ,  Issue: 4 )