By Topic

Algorithms for Detecting M-Dimensional Objects in N-Dimensional Spaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vangalur S. Alagar ; Department of Computer Science, Concordia University, Montreal, P.Q., Canada. ; Larry H. Thiel

Exact and approximate algorithms for detecting lines in a two-dimensional image space are discussed. For the case of uniformly distributed noise within an image space, transform methods and different notions of probability measures governing the parameters of the transforms are described. It is shown that different quantization schemes of the transformed space are desirable for different probabilistic assumptions. The quantization schemes are evaluated and compared. For one of the procedures that uses a generalized Duda-Hart procedure and a mixed quantization scheme, the time complexity to find all m-flats in n-space is shown to be bounded by O(ptm(n-m)2), where p is the number of points and t is a user parameter. For this procedure more true flats in a given orientation have been found and the number of spurious flats is small.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-3 ,  Issue: 3 )