By Topic

An Approximate Solution to Normal Mixture Identification with Application to Unsupervised Pattern Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jack-Gerard Postaire ; MEMBER, IEEE, Laboratoire d'Electronique et d'Etude des Systemes Automatiques, Faculté des Sciences, Rabat, Morocco. ; Christian P. A. Vasseur

In this paper, an approach to unsupervised pattern classifiation is discussed. The classification scheme is based on an approximation of the probability densities of each class under the assumption that the input patterns are of a normal mixture. The proposed technique for identifying the mixture does not require prior information. The description of the mixture in terms of convexity allows to determine, from a totally unlabeled set of samples, the number of components and, for each of them, approximate values of the mean vector, the covariance matrix, and the a priori probability. Discriminant functions can then be constructed. Computer simulations show that the procedure yields decision rules whose performances remain close to the optimum Bayes minimum error-rate, while involving only a small amount of computation.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:PAMI-3 ,  Issue: 2 )