By Topic

Random Graphs: Structural-Contextual Dichotomy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wong, Andrew K.C. ; MEMBER, IEEE, Department of Systems Design, University of Waterloo, Waterloo, Ont., Canada. ; Ghahraman, David E.

A formal definition of random graphs is introduced which is applicable to graphical pattern recognition problems. The definition is used to formulate rigorously the structural-contextual dichotomy of random graphs. The probability of outcome graphs is expressed as the product of two terms, one due to the statistical variability of structure among the outcome graphs and the other due to their contextual variability. Expressions are obtained to estimate the various probability, typicality, and entropy measures. The members in an ensemble of signed digraphs are interpreted as outcome graphs of a random graph. The synthesized random graph is used to quantify the structural, contextual, and overall typicality of the outcome graphs with respect to the random graph.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 4 )