Cart (Loading....) | Create Account
Close category search window
 

Sensitivity Analysis in Bayesian Classification Models: Multiplicative Deviations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ben-Bassat, Moshe ; Institute of Critical Care Medicine and the Division of Critical Care Medicine, University of Southern California School of Medicine, Los Angeles, CA 90027; Faculty of Management, Tel Aviv University, Tel Aviv, Israel. ; Klove, Karin L. ; Weil, Max H.

The sensitivity of Bayesian pattern recognition models to multiplicative deviations in the prior and conditional probabilities is investigated for the two-class case. Explicit formulas are obtained for the factor K by which the computed posterior probabilities should be divided in order to eliminate the deviation effect. Numerical results for the case of binary features indicate that the Bayesian model tolerates large deviations in the prior and conditional probabilities. In fact, the a priori ratio and the likelihood ratio may deviate within a range of 65-135 percent and still produce posterior probabilities in accurate proximity of at most ±0.10. The main implication is that Bayesian systems which are based on limited data or subjective probabilities are expected to have a high percentage of correct classification despite the fact that the prior and conditional probabilities they use may deviate rather significantly from the true values.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 3 )

Date of Publication:

May 1980

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.