By Topic

The Sensitivity of the Modified Viterbi Algorithm to the Source Statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shinghal, Rajjan ; Department of Computer Science, Concordia University, Montreal, P.Q., Canada. ; Toussaint, G.T.

The modified Viterbi algorithm is a powerful, and increasingly used, tool for using contextual information in text recognition in its various forms. As yet, no known studies have been published concerning its robustness with respect to source statistics. This paper describes experiments performed to determine the sensitivity of the algorithm to variations in source statistics. The results of the experiments show that a character-recognition machine incorporating the modified Viterbi algorithm, using N-gram statistics estimated from source A does not deteriorate in performance when operating on a passage from source B even if A and B differ significantly in N-gram distributions or entropy.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-2 ,  Issue: 2 )