By Topic

PFS Clustering Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vogel, Mark A. ; MEMBER, IEEE, The Analytic Sciences Corporation, Reading, MA 01867. ; Wong, Andrew K.C.

This paper presents a method of cluster analysis based on a pseudo F-statistic (PFS) criterion function. It is designed to subdivide an ensemble into an optimal set of groups, where the number of groups is not specified and no ad hoc parameters are employed. Univariate and multivariate F-statistic and pseudo F-statistic consistency is displayed. Algorithms for feasible application of PFS are given. Results from simulations are utilized to demonstrate the capabilities of the PFS clustering method and to provide a comparative guide for other users.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-1 ,  Issue: 3 )