By Topic

An Intrinsic Dimensionality Estimator from Near-Neighbor Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pettis, Karl W. ; Department of Computer Science, Michigan State University, East Lansing, MI 48824. ; Bailey, Thomas A. ; Jain, Anil K. ; Dubes, Richard C.

The intrinsic dimensionality of a set of patterns is important in determining an appropriate number of features for representing the data and whether a reasonable two- or three-dimensional representation of the data exists. We propose an intuitively appealing, noniterative estimator for intrinsic dimensionality which is based on nearneighbor information. We give plausible arguments supporting the consistency of this estimator. The method works well in identifying the true dimensionality for a variety of artificial data sets and is fairly insensitive to the number of samples and to the algorithmic parameters. Comparisons between this new method and the global eigenvalue approach demonstrate the utility of our estimator.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:PAMI-1 ,  Issue: 1 )