By Topic

Multi-threshold CMOS design for low power digital circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Hemantha ; Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, India ; Amit Dhawan ; Haranath Kar

Multi-threshold CMOS (MTCMOS) power gating is a design technique in which a power gating transistor is connected between the logic transistors and either power or ground, thus creating a virtual supply rail or virtual ground rail, respectively. Power gating transistor sizing, transition (sleep mode to active mode) current, short circuit current and transition time are design issues for power gating design. The use of power gating design results in the delay overhead in the active mode. If both nMOS and pMOS sleep transistor are used in power gating, delay overhead will increase. This paper proposes the design methodology for reducing the delay of the logic circuits during active mode. This methodology limits the maximum value of transition current to a specified value and eliminates short circuit current. Experiment results show 16.83% reduction in the delay.

Published in:

TENCON 2008 - 2008 IEEE Region 10 Conference

Date of Conference:

19-21 Nov. 2008