Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Improved performance with novel utility functions in a game-theoretic model of medium access control in wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanyal, D.K. ; Interra Syst. (India) Pvt. Ltd. ; Chattopadhyay, M. ; Chattopadhyay, S.

This paper presents a novel game-theoretic design to optimize the performance of medium access control (MAC) in wireless networks. The nodes of the network are modeled as selfish and rational players of a non-cooperative game. We define novel utility functions to capture their gain from channel access. We characterize the Nash equilibrium of the game and show that it is unique and non-trivial. This ensures a stable operating point from which no player has an incentive to deviate unilaterally and where every player has an equal non-trivial share of the transmission channel. Thus the selfish behavior of the nodes is used to ensure desirable properties of the network as a whole. The nodes follow a distributed update mechanism to reach the equilibrium. They need no message passing or network-wide information. We implement its asynchronous version in NS-2 and study the dynamics of the game. We compare, via simulations, our game model with the distributed coordination function (DCF) in IEEE 802.11 and a comparable game model in the literature. We observe that our design outperforms both these designs and provides much higher throughput and lower collision overhead over a very wide range of network sizes.

Published in:

TENCON 2008 - 2008 IEEE Region 10 Conference

Date of Conference:

19-21 Nov. 2008