By Topic

VHF/UHF range bioultrasonic spectroscopy system and method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. Kuskibiki ; Dept. of Electr. Eng., Tohoku Univ., Sendai, Japan ; N. Akashi ; T. Sannomiya ; N. Chubachi
more authors

A new system and method for characterizing biological tissues in vitro and liquids in the VHF and UHF ranges is described. Bulk acoustic properties such as the sound velocity, attenuation, acoustic impedance, and density are determined in reflection and transmission modes, with the biological tissue/liquid specimen sandwiched between the parallel surfaces of synthetic silica glass buffer rods having ZnO piezoelectric film transducers on their opposite ends. The method is an ultrasonic transmission line comparison method wherein the reference medium is distilled water, for which all acoustic properties are known. Measurement errors due to diffraction losses in the acoustic media and to mode conversion at the buffer/sample interfaces are corrected. Special techniques for achieving precise parallelism between the two rod surfaces, for movement to adjust the gap distance, and for signal processing are employed in order to obtain high measurement accuracy. Attenuation and reflection coefficients are determined using the gated pulse echo method. The sound velocity is determined with the gated pulse interference method by sweeping the ultrasonic frequency, or by changing the gap distance. Results of measurements on castor oil, cottonseed oil, silicone oil, and bovine liver, in the frequency range from 10 to 500 MHz, are presented and compared with results of earlier reports.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:42 ,  Issue: 6 )