By Topic

Goal-directed evaluation of binarization methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
O. D. Trier ; Dept. of Inf., Oslo Univ., Norway ; A. K. Jain

This paper presents a methodology for evaluation of low-level image analysis methods, using binarization (two-level thresholding) as an example. Binarization of scanned gray scale images is the first step in most document image analysis systems. Selection of an appropriate binarization method for an input image domain is a difficult problem. Typically, a human expert evaluates the binarized images according to his/her visual criteria. However, to conduct an objective evaluation, one needs to investigate how well the subsequent image analysis steps will perform on the binarized image. We call this approach goal-directed evaluation, and it can be used to evaluate other low-level image processing methods as well. Our evaluation of binarization methods is in the context of digit recognition, so we define the performance of the character recognition module as the objective measure. Eleven different locally adaptive binarization methods were evaluated, and Niblack's method gave the best performance

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 12 )