By Topic

Symmetry as a continuous feature

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zabrodsky, H. ; Inst. of Comput. Sci., Hebrew Univ., Jerusalem, Israel ; Peleg, S. ; Avnir, D.

Symmetry is treated as a continuous feature and a continuous measure of distance from symmetry in shapes is defined. The symmetry distance (SD) of a shape is defined to be the minimum mean squared distance required to move points of the original shape in order to obtain a symmetrical shape. This general definition of a symmetry measure enables a comparison of the “amount” of symmetry of different shapes and the “amount” of different symmetries of a single shape. This measure is applicable to any type of symmetry in any dimension. The symmetry distance gives rise to a method of reconstructing symmetry of occluded shapes. The authors extend the method to deal with symmetries of noisy and fuzzy data. Finally, the authors consider grayscale images as 3D shapes, and use the symmetry distance to find the orientation of symmetric objects from their images, and to find locally symmetric regions in images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:17 ,  Issue: 12 )