By Topic

Dynamic load balancing in multicomputer database systems using partition tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua, K.A. ; Dept. of Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Chiang Lee ; Hua, C.M.

Shared nothing multiprocessor architecture is known to be more scalable to support very large databases. Compared to other join strategies, a hash-based join algorithm is particularly efficient and easily parallelized for this computation model. However, this hardware structure is very sensitive to the skew in tuple distribution. Unless the parallel hash join algorithm includes some dynamic load balancing mechanism, the skew effect can severely deteriorate the system performance. In this paper, we investigate this issue. In particular, three parallel hash join algorithms are presented. We implement a simulator to study the effectiveness of these schemes. The simulation model is validated by comparing the simulation results to those produced by the actual implementation of the algorithms running on a multiprocessor system. Our performance study indicates that a naive approach is not able to provide tangible savings. However, the carefully designed strategies can offer substantial improvement over conventional techniques for a wide range of skew conditions

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:7 ,  Issue: 6 )