By Topic

Electricity price forecasting in Iranian electricity market applying Artificial Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zarezadeh, M. ; Dept. of Ind. Eng., Univ. of Tehran, Tehran ; Naghavi, A. ; Ghaderi, S.F.

Nowadays in deregulated electricity markets, forecasting becomes more and more important. Accurate estimating price is the most essential task and the basis for any decision making and developing biding strategies. In this paper artificial neural network (ANN) is applied to forecast electricity price. ANNs have been used successfully in many forecasting applications recently. Historical data of weighted average prices in electricity market that cleared with pay as bid settlement rule and also forecasted electricity demand are used to train neural networks (NN) model. The data for historical electricity prices are considered by two criterion of temperature and load in order to improve training. Data are categorized in to two seasonal parts of warm and cold days and also they are categorized by three loads level of low, normal and peak. To support better accuracy of estimating prices six different NN architectures are modeled for combination of the criterions, the NN also selected electricity prices of similar days in previous year. In the end, the results of forecasting prices of ANNs are compared with the results obtained from regression model. There is confirmed that, AANs have better performance comparing to traditional method in forecasting electricity prices.

Published in:

Electric Power Conference, 2008. EPEC 2008. IEEE Canada

Date of Conference:

6-7 Oct. 2008