By Topic

Detection of random signals in Gaussian mixture noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stein, D.W.J. ; NRaD, San Diego, CA, USA

A locally optimal detection algorithm for random signals in dependent noise is derived and applied to independent identically distributed complex-valued Gaussian mixture noise. The resulting detector is essentially a weighted sum of power detectors-the power detector is the locally optimal detector for random signals in Gaussian noise. The weighting functions are modified to enhance the detection performance for small sample sizes. An implementation of the mixture detector, using the expectation-maximization algorithm, is described. Moments of these detectors are calculated from piecewise-polynomial approximations of the weighting functions. The sum of sufficiently many independent identically distributed detector outputs is then approximated by a normal distribution. Probability distributions are also derived for the power detector in Gaussian mixture noise. For a particular set of noise parameters, the theoretical distributions are compared with those obtained from Monte Carlo simulation and seen to be quite close. The theoretical distributions are then used to compare the performance of the mixture and power detectors in Gaussian mixture noise over a range of parameters and to assess the impact of parameter error on detection performance. In this study, the signal gain of the mixture detectors varies from 15 to 38 dB, and the degradation of the probability of detection due to parameter estimation error is relatively minor

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 6 )