By Topic

A robust micro-vibration sensor for biomimetic fingertips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fishel, J.A. ; Dept. of Biomed. Eng., Univ. of Southern California, Los Angeles, CA ; Santos, V.J. ; Loeb, G.E.

Controlling grip force in a prosthetic or robotic hand requires detailed sensory feedback information about microslips between the artificial fingertips and the object. In the biological hand this is accomplished with neural transducers capable of measuring micro-vibrations in the skin due to sliding friction. For prosthetic tactile sensors, emulating these biological transducers is a difficult challenge due to the fragility associated with highly sensitive devices. Incorporating a pressure sensor into a fluid-filled fingertip provides a novel solution to this problem by effectively creating a device similar to a hydrophone, capable of recording vibrations from lateral movements. The fluid conducts these acoustic signals well and with little attenuation, permitting the pressure sensing elements to be located in a protected region inside the core of the sensor and removing them from harmpsilas way. Preliminary studies demonstrate that high frequency vibrations (50-400 Hz) can be readily detected when such a fingertip slides across a ridged surface.

Published in:

Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on

Date of Conference:

19-22 Oct. 2008