Cart (Loading....) | Create Account
Close category search window
 

Accurate positioning for intervention on the beating heart using a crawling robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Patronik, N.A. ; Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA ; Ota, T. ; Zenati, M.A. ; Riviere, C.N.

Heart failure resulting from myocardial infarct, oxygen-deprived tissue death, is a serious disease that affects over 20 million patients in the world. The precise injection of tissue-engineered materials into the infarct site is emerging as a treatment strategy to improve cardiac function for patients with heart failure. We have developed a novel miniature robotic device (HeartLander) that can act as a manipulator for precise and stable interaction with the epicardial surface of the beating heart by mounting directly to the organ. The robot can be delivered to and operate within the intrapericardial space with the chest closed, through a single small incision below the sternum. The tethered crawling device uses vacuum pressure to maintain prehension of the epicardium, and a drive wire transmission motors for actuation. An onboard electromagnetic tracking sensor enables the display of the robot location on the heart surface to the surgeon, and closed-loop control of the robot positioning to targets. In a closed-chest animal study with the pericardium intact, HeartLander demonstrated the ability to acquire a pattern of targets located on the posterior surface of the beating heart within an average of 1.7 plusmn 1.0 mm. Dye injections were performed following the target acquisitions to simulate injection therapy for heart failure. HeartLander may prove useful in the delivery of intrapericardial treatments, like myocardial injection therapy, in a precise and stable manner, which could be performed on an outpatient basis.

Published in:

Biomedical Robotics and Biomechatronics, 2008. BioRob 2008. 2nd IEEE RAS & EMBS International Conference on

Date of Conference:

19-22 Oct. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.