Cart (Loading....) | Create Account
Close category search window

Static security assessment using artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saeh, I.S. ; Dept. of Electr. Eng., Univ. Technol. Malaysia, Johor Bahru ; Khairuddin, A.

Deregulation of power system in recent years has turned static security assessment into a challenging task for which acceptably fast and accurate assessment methodology is essential. Occurrences related to over and undervoltage and line overloading have been responsible for undesirable power system collapse leading to partial or even complete blackouts. This paper presents a research work on artificial neural network (ANN) to examine whether the power system is secured under steady-state operating conditions. The ANN gauges the bus voltages and the line flow conditions. Using the method, detailed load flow study is can be omitted provided that the data supplied to ANN sufficiently cover these operating constraints. A methodology using minimum number of cases from the available large number of contingencies in terms of their impact on the system security has been developed. For training, data from Newton Raphson load flow analysis are used. The artificial neural network has been developed using multilayer feed forward network with backpropagation algorithm. The input variables to the network are loadings of the lines and the voltage magnitude of the load buses. The algorithms are initially tested on the 5 bus and verified on the IEEE-14 bus test system. The results obtained from both test systems indicate that ANN method is comparable in accuracy to the Newton Raphson load flow method with enhanced computational time taken in the process.

Published in:

Power and Energy Conference, 2008. PECon 2008. IEEE 2nd International

Date of Conference:

1-3 Dec. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.