By Topic

Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Grobner bases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saints, K. ; QUALCOMM Inc., San Diego, CA, USA ; Heegard, C.

It is proved that any algebraic-geometric (AG) code can be expressed as a cross section of an extended multidimensional cyclic code. Both AG codes and multidimensional cyclic codes are described by a unified theory of linear block codes defined over point sets: AG codes are defined over the points of an algebraic curve, and an m-dimensional cyclic code is defined over the points in m-dimensional space. The power of the unified theory is in its description of decoding techniques using Grobner bases. In order to fit an AG code into this theory, a change of coordinates must be applied to the curve over which the code is defined so that the curve is in special position. For curves in special position, all computations can be performed with polynomials and this also makes it possible to use the theory of Grobner bases. Next, a transform is defined for AG codes which generalizes the discrete Fourier transform. The transform is also related to a Grobner basis, and is useful in setting up the decoding problem. In the decoding problem, a key step is finding a Grobner basis for an error locator ideal. For AG codes, multidimensional cyclic codes, and indeed, any cross section of an extended multidimensional cyclic code, Sakata's algorithm can be used to find linear recursion relations which hold on the syndrome array. In this general context, the authors give a self-contained and simplified presentation of Sakata's algorithm, and present a general framework for decoding algorithms for this family of codes, in which the use of Sakata's algorithm is supplemented by a procedure for extending the syndrome array

Published in:

Information Theory, IEEE Transactions on  (Volume:41 ,  Issue: 6 )