Cart (Loading....) | Create Account
Close category search window
 

On efficient Viterbi decoding for hidden semi-Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Datta, R. ; Penn State Univ., University Park, PA ; Jianying Hu ; Ray, B.

We present algorithms for improved Viterbi decoding for the case of hidden semi-Markov models. By carefully constructing directed acyclic graphs, we pose the decoding problem as that of finding the longest path between specific pairs of nodes. We consider fully connected models as well as restrictive topologies and state duration conditions, and show that performance improves by a significant factor in all cases. Detailed algorithms as well as theoretical results related to their run times are provided.

Published in:

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on

Date of Conference:

8-11 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.