By Topic

Multicoloring of grid-structured PDE solvers on shared-memory multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hwang-Cheng Wang ; Dept. of Inf. Manage. & Eng., Wufeng Inst. of Technol., Taiwan ; Kai Hwang

In order to execute a parallel PDE (partial differential equation) solver on a shared-memory multiprocessor, we have to avoid memory conflicts in accessing multidimensional data grids. A new multicoloring technique is proposed for speeding sparse matrix operations. The new technique enables parallel access of grid-structured data elements in the shared memory without causing conflicts. The coloring scheme is formulated as an algebraic mapping which can be easily implemented with low overhead on commercial multiprocessors. The proposed multicoloring scheme bas been tested on an Alliant FX/80 multiprocessor for solving 2D and 3D problems using the CGNR method. Compared to the results reported by Saad (1989) on an identical Alliant system, our results show a factor of 30 times higher performance in Mflops. Multicoloring transforms sparse matrices into ones with a diagonal diagonal block (DDB) structure, enabling parallel LU decomposition in solving PDE problems. The multicoloring technique can also be extended to solve other scientific problems characterized by sparse matrices

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:6 ,  Issue: 11 )