By Topic

Re-ranking of web image search results using a graph algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hilal Zitouni ; Bilkent University, Department of Computer Engineering, Ankara, Turkey ; Sare Sevil ; Derya Ozkan ; Pinar Duygulu

We propose a method to improve the results of image search engines on the Internet to satisfy users who desire to see relevant images in the first few pages. The method re-ranks the results of text based systems by incorporating visual similarity of the resulting images. We observe that, together with many unrelated ones, results of text based systems include a subset of correct images, and this set is, in general, the largest one which has the most similar images compared to other possible subsets. Based on this observation, we present similarities of all images in a graph structure, and find the densest component that corresponds to the largest set of most similar subset of images. Then, to re-rank the results, we give higher priority to the images in the densest component, and rank the others based on their similarities to the images in the densest component. The experiments are carried out on 18 category of images from.

Published in:

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on

Date of Conference:

8-11 Dec. 2008