By Topic

A new approach for automatic analysis of 3D low dose CT images for accurate monitoring the detected lung nodules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
El-Baz, A. ; Bioeng. Dept., Univ. of Louisville, Louisville, KY ; Gimel'farb, G. ; Falk, R. ; El-Ghar, M.A.

Our long term research goal is to develop a fully automated, image-based diagnostic system for early diagnosis of pulmonary nodules that may lead to lung cancer. This paper focuses on monitoring the development of lung nodules detected in successive chest low dose (LD) CT scans of a patient. We propose a new methodology for 3D LDCT data registration which is non-rigid and involves two steps: (i) global alignment of one scan (target) to another scan (reference or prototype) using the learned prior appearance model followed by (ii) local alignment in order to correct for intricate deformations. After equalizing signals for two subsequent chest scans, visual appearance of these chest images is modeled with a Markov-Gibbs random field with pairwise interaction. We estimate the affine transformation that globally register the target to the prototype by gradient descent maximization of a special Gibbs energy function. To handle local deformations, we deform each voxel of the target over evolving closed equi-spaced surfaces (iso-surfaces) to closely match the prototype. The evolution of the iso-surfaces is guided by an exponential speed function in the directions that minimize distances between the corresponding voxel pairs on the iso-surfaces in both the data sets. Preliminary results on the 135 LDCT data sets from 27 patients show that our proper registration could lead to precise diagnosis and identification of the development of the detected pulmonary nodules.

Published in:

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on

Date of Conference:

8-11 Dec. 2008