By Topic

Improving Bayesian Network parameter learning using constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
de Campos, C.P. ; Rensselaer Polytech. Inst., Troy, NY ; Qiang Ji

This paper describes a new approach to unify constraints on parameters with training data to perform parameter estimation in Bayesian networks of known structure. The method is general in the sense that any convex constraint is allowed, which includes many proposals in the literature. Driven by a maximum entropy criterion and the imprecise Dirichlet model, we present a constrained convex optimization formulation to combine priors, constraints and data. Experiments indicate benefits of this framework.

Published in:

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on

Date of Conference:

8-11 Dec. 2008