By Topic

Kernel bandwidth estimation in methods based on probability density function modelling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Adrian G. Bors ; Dept. of Computer Science, University of York, YO10 5DD, UK ; Nikolaos Nasios

In kernel density estimation methods, an approximation of the data probability density function is achieved by locating a kernel function at each data location. The smoothness of the functional approximation and the modelling ability are controlled by the kernel bandwidth. In this paper we propose a Bayesian estimation method for finding the kernel bandwidth. The distribution corresponding to the bandwidth is estimated from distributions characterizing the second order statistics estimates calculated from local neighbourhoods. The proposed bandwidth estimation method is applied in three different kernel density estimation based approaches: scale space, mean shift and quantum clustering. The third method is a novel pattern recognition approach using the principles of quantum mechanics.

Published in:

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on

Date of Conference:

8-11 Dec. 2008