Cart (Loading....) | Create Account
Close category search window

Bayesian image reconstruction in SPECT using higher order mechanical models as priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soo-Jin Lee ; Dept. Diagnostic Radiol. & Electr. Eng., State Univ. of New York, Stony Brook, NY, USA ; Rangarajan, A. ; Gindi, G.

While the ML-EM algorithm for reconstruction for emission tomography is unstable due to the ill-posed nature of the problem. Bayesian reconstruction methods overcome this instability by introducing prior information, often in the form of a spatial smoothness regularizer. More elaborate forms of smoothness constraints may be used to extend the role of the prior beyond that of a stabilizer in order to capture actual spatial information about the object. Previously proposed forms of such prior distributions were based on the assumption of a piecewise constant source distribution. Here, the authors propose an extension to a piecewise linear model-the weak plate-which is more expressive than the piecewise constant model. The weak plate prior not only preserves edges but also allows for piecewise ramplike regions in the reconstruction. Indeed, for the authors' application in SPECT, such ramplike regions are observed in ground-truth source distributions in the form of primate autoradiographs of rCBF radionuclides. To incorporate the weak plate prior in a MAP approach, the authors model the prior as a Gibbs distribution and use a GEM formulation for the optimization. They compare quantitative performance of the ML-EM algorithm, a GEM algorithm with a prior favoring piecewise constant regions, and a GEM algorithm with their weak plate prior. Pointwise and regional bias and variance of ensemble image reconstructions are used as indications of image quality. The authors' results show that the weak plate and membrane priors exhibit improved bias and variance relative to ML-EM techniques

Published in:

Medical Imaging, IEEE Transactions on  (Volume:14 ,  Issue: 4 )

Date of Publication:

Dec 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.