Cart (Loading....) | Create Account
Close category search window
 

Incremental learning in non-stationary environments with concept drift using a multiple classifier based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karnick, M. ; Electr. & Comput. Eng., Rowan Univ., Glassboro, NJ, USA ; Muhlbaier, M.D. ; Polikar, R.

We outline an incremental learning algorithm designed for nonstationary environments where the underlying data distribution changes over time. With each dataset drawn from a new environment, we generate a new classifier. Classifiers are combined through dynamically weighted majority voting, where voting weights are determined based on classifiers¿ age and accuracy on current and past environments. The most recent and relevant classifiers are weighted higher, allowing the algorithm to appropriately adapt to drifting concepts. This algorithm does not discard prior classifiers, allowing efficient learning of potentially cyclical environments. The algorithm learns incrementally, i.e., without access to previous data. Finally, the algorithm can use any supervised classifier as its base model, including those not normally capable of incremental learning. We present the algorithm and its performance using different base learners in different environments with varying types of drift.

Published in:

Pattern Recognition, 2008. ICPR 2008. 19th International Conference on

Date of Conference:

8-11 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.