By Topic

A Low-Complexity Universal Scheme for Rate-Constrained Distributed Regression Using a Wireless Sensor Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fernandes, A.L. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL ; Raginsky, M. ; Coleman, T.P.

We propose a scheme for rate-constrained distributed nonparametric regression using a wireless sensor network. The scheme is universal across a wide range of sensor noise models, including unbounded and nonadditive noise; it has low complexity, requiring simple operations such as uniform scalar quantization with dither and message passing between neighboring nodes in the network, and attains minimax optimality for regression functions in common smoothness classes. We present theoretical results on the tradeoff between the compression rate, communication complexity of encoding, and the MSE and demonstrate empirical performance of the scheme using simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:57 ,  Issue: 5 )