By Topic

Decentralized Robust Adaptive Control for the Multiagent System Consensus Problem Using Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zeng-Guang Hou ; Key Lab. of Complex Syst. & Intell. Sci., Chinese Acad. of Sci., Beijing ; Long Cheng ; Min Tan

A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 3 )