By Topic

Microwave Imaging for Early Breast Cancer Detection Using a Shape-based Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Irishina, N. ; Univ. Carlos III de Madrid, Leganes ; Moscoso, M. ; Dorn, O.

In this paper, we propose and analyze a novel shape reconstruction technique for the early detection of breast cancer from microwave data, which is based on a level-set technique. The shape-based approach offers several advantages compared to more traditional pixel-based approaches when targeting the reconstruction of key characteristics of a hidden tumor such as its correct size, shape, and static permittivity value. In addition to these key characteristics of hidden tumors, we aim at estimating the correct interfaces between fatty and fibroglandular tissue in the breast and their internal permittivity profiles. The level set strategy (which is an implicit representation of the shapes) frees us from topological restrictions when reconstructing an a priori arbitrary number of tumors and the often quite complicated interfaces between fatty and fibroglandular regions. The presented strategy is able to detect and, in most cases, characterize tumors whose sizes (diameters) are much smaller than the wavelengths of the electromagnetic waves that are used for illuminating the breast. We present numerical results for a 2-D model with two distinct tissue types (fatty and fibroglandular) in the interior of the breast (in addition to a possible tumor and the surrounding skin). Our results demonstrate the performance and potential of our scheme in various simulated but realistic situations.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:56 ,  Issue: 4 )