By Topic

Optimal Variable Switching Frequency Scheme for Reducing Switching Loss in Single-Phase Inverters Based on Time-Domain Ripple Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaolin Mao ; Arizona State Univ., Tempe, AZ ; Ayyanar, R. ; Krishnamurthy, H.K.

The choice of switching frequency for pulsewidth modulation single-phase inverters, such as those used in grid-connected photovoltaic application, is usually a tradeoff between reducing the total harmonic distortion (THD) and reducing the switching loss. This paper discusses an approach to minimize the switching loss while meeting a given THD requirement using variable switching frequency schemes (switching schemes with the switching frequency varying within a fundamental period). An optimal switching scheme is proposed based on time-domain current ripple analysis and the calculus of variations. The analysis shows that, to meet the same THD requirement, the optimal scheme has a significant saving on switching loss, compared to the fixed switching frequency scheme and the hysteresis control scheme, in addition to other benefits such as reduced peak switching loss and a spread spectrum of the current harmonics. The optimal scheme has been implemented in a prototype and the experimental results have verified the theoretical analysis. Also, a straightforward design method for designing filter inductors for single-phase converters is provided based on the time-domain current ripple analysis.

Published in:

Power Electronics, IEEE Transactions on  (Volume:24 ,  Issue: 4 )