By Topic

Manifold-Based Learning and Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dong Huang ; Comput. Intell. Lab., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Zhang Yi ; Xiaorong Pu

This paper proposes a new approach to analyze high-dimensional data set using low-dimensional manifold. This manifold-based approach provides a unified formulation for both learning from and synthesis back to the input space. The manifold learning method desires to solve two problems in many existing algorithms. The first problem is the local manifold distortion caused by the cost averaging of the global cost optimization during the manifold learning. The second problem results from the unit variance constraint generally used in those spectral embedding methods where global metric information is lost. For the out-of-sample data points, the proposed approach gives simple solutions to transverse between the input space and the feature space. In addition, this method can be used to estimate the underlying dimension and is robust to the number of neighbors. Experiments on both low-dimensional data and real image data are performed to illustrate the theory.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:39 ,  Issue: 3 )