Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

System Performances of On-Chip Silicon Microring Delay Line for RZ, CSRZ, RZ-DB and RZ-AMI Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
5 Author(s)
Li, Qiang ; Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai ; Fangfei Liu ; Ziyang Zhang ; Min Qiu
more authors

We theoretically study the group-delay characteristics of a silicon microring resonator based on the coupled mode theory, and experimentally demonstrate error-free operations of an on-chip delay line using a silicon-on-insulator (SOI) microring resonator with a 20-mum radius. Four signals of different modulation formats are examined at 5 Gb/s, including return-to-zero (RZ), carrier-suppressed return-to-zero (CSRZ), return-to-zero duobinary (RZ-DB), and return-to-zero alternate-mark-inversion (RZ-AMI). Bit error rate (BER) measurements show that the maximal delay times with error-free operations are 80, 95, 110, and 65 ps, respectively, corresponding to a fractional group delay of ~0.4, ~0.5, ~0.55, and ~0.35. The differences in delay and signal degradations have been investigated based on the signal spectra and pattern dependences. Although the delays are demonstrated in a single ring resonator, the analysis is applicable in slow-light resonance structures such as all-pass filters (APF) and coupled resonator optical waveguides (CROW).

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 23 )