By Topic

Arbitrarily tight upper and lower bounds on the Bayesian probability of error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Avi-Itzhak, H. ; Canon Res. Center America, Palo Alto, CA, USA ; Diep, T.

This paper presents new upper and lower bounds on the minimum probability of error of Bayesian decision systems for the two-class problem. These bounds can be made arbitrarily close to the exact minimum probability of error, making them tighter than any previously known bounds

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:18 ,  Issue: 1 )