System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Handling Movement Epenthesis and Hand Segmentation Ambiguities in Continuous Sign Language Recognition Using Nested Dynamic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruiduo Yang ; Dept. of Comput. Sci. & Eng., Univ. of South Florida, Tampa, FL, USA ; Sarkar, S. ; Loeding, B.

We consider two crucial problems in continuous sign language recognition from unaided video sequences. At the sentence level, we consider the movement epenthesis (me) problem and at the feature level, we consider the problem of hand segmentation and grouping. We construct a framework that can handle both of these problems based on an enhanced, nested version of the dynamic programming approach. To address movement epenthesis, a dynamic programming (DP) process employs a virtual me option that does not need explicit models. We call this the enhanced level building (eLB) algorithm. This formulation also allows the incorporation of grammar models. Nested within this eLB is another DP that handles the problem of selecting among multiple hand candidates. We demonstrate our ideas on four American Sign Language data sets with simple background, with the signer wearing short sleeves, with complex background, and across signers. We compared the performance with conditional random fields (CRF) and latent dynamic-CRF-based approaches. The experiments show more than 40 percent improvement over CRF or LDCRF approaches in terms of the frame labeling rate. We show the flexibility of our approach when handling a changing context. We also find a 70 percent improvement in sign recognition rate over the unenhanced DP matching algorithm that does not accommodate the me effect.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 3 )