Cart (Loading....) | Create Account
Close category search window
 

Adder and Multiplier Design in Quantum-Dot Cellular Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cho, H. ; Qualcomm Inc., San Diego, CA ; Swartzlander, E.E.

Quantum-dot cellular automata (QCA) is an emerging nanotechnology, with the potential for faster speed, smaller size, and lower power consumption than transistor-based technology. Quantum-dot cellular automata has a simple cell as the basic element. The cell is used as a building block to construct gates and wires. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. That work demonstrated that the design trade-offs are very different in QCA. This paper utilizes the unique QCA characteristics to design a carry flow adder that is fast and efficient. Simulations indicate very attractive performance (i.e., complexity, area, and delay). This paper also explores the design of serial parallel multipliers. A serial parallel multiplier is designed and simulated with several different operand sizes.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 6 )

Date of Publication:

June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.